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COSYN: Hardware—Software Co-Synthesis of
Heterogeneous Distributed Embedded Systems

Bharat P. DaveMember, IEEE,Ganesh Lakshminarayana, and Niraj K. Jhaljow, IEEE

Abstract— Hardware—software co-synthesis starts with an an optimal hardware—software architecture entails selection
embedded-system specification and results in an architecture of processors, ASIC’s, FPGA’s, and communication links
consisting of hardware and software modules to meet g0y that the architecture cost is minimum and all real-
performance, power, and cost goals. Embedded systems,. .
are generally specified in terms of a set of acyclic task graphs. time qons_tralnts are_ met. For |.OW'power.emb§d_ded systems,
In this paper, we present a co-synthesis algorithm COSYN, the aim is to obtain an architecture with minimum aver-
which starts with periodic task graphs with real-time constraints age power dissipation while meeting all real-time and peak
and produces a low-cost heterogeneous distributed embedded-power constraints. Hardware—software co-synthesis involves

system architecture meeting these constraints. It SUPPOMS ) 5catinn scheduling, and performance estimation. Alloca-
both concurrent and sequential modes of communication and

computation. It employs a combination of preemptive and UON determines the mapping of tasks to processing elements
nonpreemptive static scheduling. It allows task graphs in which (PE’s) and inter-task communications to communication links.
different tasks have different deadlines. It introduces the concept Scheduling determines the sequencing of tasks mapped to a
of an association array to tackle the problem of multirate pg and communications on a link. Performance estimation

systems. It uses a new task-clustering technique, which takes . . . )
the changing nature of the critical path in the task graph determines the finish time of each task in the embedded-system

into account. It supports pipelining of task graphs and a mix SPecification and the quality of the system in terms of dollar
of various technologies to meet embedded-system constraintsCOSt, power consumption, fault tolerance, etc. Both allocation

and minimize power dissipation. In general, embedded-system and scheduling are known to be NP complete [1]. Therefore,
tasks are reused across multiple functions. COSYN uses the optimal co-synthesis is computationally hard.

concept of architectural hints and reuse to exploit this fact. . o .
Finally, if desired, it also optimizes the architecture for power Emphasis on distributed embedded-system architecture co-

consumption. COSYN produces optimal results for the examples Synthesis and partitioning is fairly recent [2]-{12]. The optimal
from the literature while providing several orders of magnitude co-synthesis approaches are mixed-integer linear programming
aldvaqthage_il_nhcengal pfOC(f?Séiong%lit tin(wje.tovler an existing tOIOtima| (MILP) [7] and exhaustive [8]. These are, however, applicable
algorithm. The efficacy o and its low-power extension Lt

C(QDSYN-LP is also es%lablished through their apglication to very to very S.m"."” task graphs (Cor.]SISt".]g of ten or so t.aSkS)'
large task graphs (with over 1000 tasks). The heuristic gp_proache; are !terat!ve a.nd constructive. In
the former, an initial solution is iteratively improved through
various moves. In the latter, the solution is built step-by-step.
The iterative procedure in [9] and [10] considers only one
type of communication link and does not allow mapping of
I. INTRODUCTION each successive copy of a periodic task to a different PE.

DVANCEMENTS in very large scale integration (VLSI), The iterative synthesis technique for low-power systems in
Acomputer-aided design, and packaging areas have kkl] ignores inter-task communications, and is restricted to
sulted in an explosive growth in embedded systems. H@er!odic task graphs fpr which the deadline is equal. to the
erogeneous distributed architectures are common for siR@fiod. The constructive fault tolerance procedure in [12]
systems, where several processors, application-specific irfl@€S not support communication topologies such as bus, local
grated circuits (ASIC’s), and field-programmable gate arraf§€@ network (LAN), etc., and is not suitable for multirate
(FPGA's) are interconnected by various types of commurfimbedded systems, e.g., multimedia systems. _
cation links, and multiple tasks are concurrently run on the We have developed a heuristic-based constructive co-
system. Each task can be executed on a variety of softwéthesis technique called COSYN, which includes allocation,
and hardware platforms with different dollar costs. Findingcheduling, and performance estimation steps as well as power

) ) ) optimization features. COSYN takes as an input periodic
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EST=0
Period = 150
Deadline (t10) = 100

(10,20)

{100,130 @

Deadline (t11) = 100 (30,50)
(a) Task graph (10,20) {110,160}
PE library: (110,150X110)
E-OSIE IO'beE[l-’El, PE2] = [120, 70] c3 (a, b): Execution/communication vector
ink library: {c, d}: Finish-time estimate

Cost of link [L1, 1.2] = [35, 20]
(b) Resource library

Cl1
Execution_vector of each task = [10, 20]

Communication_vector of each edge = [30, 50]

(c) Execution and communication vectors (d) FTE graph

Fig. 1. Task graph, resource library, execution/communication vectors, and the finish-time estimation (FTE) graph.

The paper is organized as follows. Section Il provideSxecution vectors are derived from laboratory measurements
preliminaries. Section Il describes the steps of our cer simulation or through worst-case delay estimation tools
synthesis algorithm. Section IV describes the low-powé§t3]. We define preference_vector) = {vi1,viz, > %n}
extension. Section V gives experimental results. Section Mihere~,; indicates preferential mapping for tagk If -y, is 0,
gives the conclusions. t; cannot be executed on PEand 1 if there are no constraints.

Similarly, we define exclusion_veci@r) = {61, 6:2, - -, 8iq}
Il. PRELIMINARIES whered;; = 1 indicates that tasks andt; have to be allocated
ptg different processors, anfl; = 0 indicates otherwise.

A cluster of tasks is a group of tasks all of which are
allocated to the same PE. For example, Fig. 1 (d) shows three
clusters:C1, C2, and C3. We define preference_vectok;

A. Task Gra_phs. N o of clusterC; to be the bit-wise logicahND of the prefeﬁenle

Each application-specific function is made up of several Sgactors of all the tasks in the cluster. This vector indicates
quential and/or concurrefabs Each job is made up of severalyhich PE’s the cluster cannot be allocated to. Similarly, we
tasks. A task contains both data- and control-flow informatiofefine exclusion vectfe;) of clusterC; to be the bit-wise
The embedded system is usually described through a sefgical or of the exclusion vectors of all the tasks in the
acyclic task graphs Nodes of a task graph represent taskgy,ster. Task; is said to be preference-compatible with cluster
Tasks communicate data to each other indicated by a directedit the pit-wise logical AND of the preference vector of
edge between them. In this paper, we focus on periodic tagkster ¢; and taskt; does not result in a vector with all
graphs with real-time constraints. Each periodic task graph hagments zero. A zero-vector makes the cluster unallocatable to
an earliest start timeEST), period, and deadlines, as showngp pg. Task; is said to be exclusion-compatible with cluster
for an example, in Fig. 1(a). Each task of a periodic task grapt'i¢ the jth entry of the exclusion vector af; is zero. This
inherits the graph’s period and can have a different deadlinggicates that tasks in clustér, can be co-allocated with task

o . t;. Taskt; and clusterC; are simply calleccompatible if ¢;
B. Definitions and Basic Concepts is both preference- and exclusion-compatible with clugter

The PE (link) library is a collection of all available PE’s We define communication_vecter,) = (Bi1,0k2, -,
(communication links). The PE and link libraries together formi....} where 3;; indicates the time it takes to communicate
theresource library The resource library and its costs for twdhe data on edge; on communication link from the link
general-purpose processoPE 1 and PE2, and two links,L1 library. The communication vector for each edge in the task
and L2, are shown in Fig. 1(b). graph of Fig. 1(a) is given in Fig. 1(ch™"(e;) (5%%(er))

We define execution_vect@) = {1, «;2, - - -, i } Where  denote the minimum (maximum) entries in this vector. This
«;; indicates the execution time of tagk on PE j from vector is computeda priori for various types of links as
the PE library. o™(t;) (a™*(¢;)) denote the minimum follows. Let p;, be the number of bytes that need to be
(maximum) entries in this vector. In Fig. 1(c), for simplicity,communicated on edgs., and A; be the number of bytes per
all tasks are assumed to have the same execution vecparcket that linkl can support, excluding the packet overhead.

In this section, we give the basic definitions and conce
which form the basis for the co-synthesis framework.
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We define access_time_ve((ﬂ)r: [Qllv Q127 Tty le] where COSYN(task graphs, resource library, constraints){
Q. represents the access time per packet witlhumber asgign dztgrislglé»zaseéiprzoritxle(velsk(taskg;ajvh):

. ; . : FORM . TATION ARRAY(task_graphs);
of cc_)mmu_nlcatlon ports on link. Suppose the_ Ilnk un_der cluster list & FORM CLUSTERS(task graphs);
consideration? hass ports. Letr; be the communication time sorted_cluster_list «sort clusters in the order
of a packet on linkl. Then of decreasing priority levels;

Jor each cluster in sorted_cluster list{
cluster tag=UNALLOCATED;}
Br = {[(pk) - ()\l)-| ° (7‘1 + le)}, partial_architecture = NULL;
ALLOCATE _CLUSTERS(sorted_cluster_list,
partial_architecture){

This equation is applicable to a link which requires an access for each unallocated cluster C; from sorted_cluster_list {

time overhead for each packet. However, some links support a allocation array — FORM_ALLOC_ARRAY(C;,

burst mode of communication, where multiple packets can be partial_architecture); .

. . . . for each allocation in allocation array {

transmitted with only a one-time link access overhead. Thus, schedule allocated clusters;

this overhead can be reduced in such cases. Initially, since /P/"fﬂfmanvfj evaluation; /! 1;€rf0rm5ﬁ"ifh time,
. . . . energy, and power estimation

the actual number of communication ports on the links is not if (deadline met in the best case) {

known, we use an average number of communication ports partial_architecture = current_allocation;

(specifieda priori) to determine the communication vector. elseb’{e“k"}

This vector is recomputed after each allocation, considering partial_architecture = best allocation:}}

the actual number of ports on the link. cluster_tag(C;) = ALLOCATED;}}

We define average_power_vec{tlgb — {&17 &27 . 7£in} return final solution = partial architecture;}

where §;; indicates the average power consumption of tagky 2. The COSYN procedure.
t; on PEj. Similarly, we define peak_power_vectyn =
{ki1,ki2, -, kin}. Preference, exclusion, average and peak
power vectprs can be 5|m||a_r|y defined for commumcatm{he hint marks the task or sub-task-graph for reuse, the co-
edges and links. We also take into account the quiescent power . . .
. S ) synthesis algorithm is run for each such task/sub-task-graph
of a PE, link, ASIC and FPGA, which indicates its power o ; :
. ! S and the solution is stored as an architectural template. During
consumption at times when no task (or communication)

. ) z'ﬁlocation, if such a task/sub-task-graph is being considered,
being executed on it. hen, if necessary (the template may already be in the partial
The storage requirements are of different types: progratmen.' : y plat Y Y part
storage, data storage, and stack storage. For each t%rsﬁhh!tecture), we add the architectural template to the partial

o architecture and proceed further.
mapped to software, memory needs are specified by a
memory vectarThe memory vector of task is defined as:
memory_vectd(t;) = [program_storage;), data_storagde, ), lIl. THE COSYN ALGORITHM
stack_storage; )] We next provide an overview of COSYN, followed by

For each available processor, its cost, supply voltage, aletails. Fig. 2 presents the pseudo-code for COSYN. First, task
erage quiescent power consumption, peak power constragrgphs, system/task constraints, and resource library are parsed
and attributes such as memory architecture, number of coamd appropriate data structures created. The hyperperiod of the
munication ports, processor-link communication, and cackgstem is computed as the least common multiple (LCM) of
characteristics are assumed to be specified. Also, the preeting- period of various task graphs. Traditionally périod; is
tion overhead for each processor is speciféegriori along the period of task graphthen [hyperperiod- period;] copies
with its execution time and average and peak power coare obtained for it [14]. However, this is impractical from
sumption. For each ASIC, its cost, supply voltage, availabb®th co-synthesis CPU time and memory requirements point-
pins, available gates, and average and peak power dissipatibwiew, specially for multirate task graphs or task graphs
per gate are assumed to be specified. For each FPGA,with co-prime periods where this ratio may be very large.
cost, supply voltage, average quiescent power, available pivie tackle this problem using the concept of association
and the maximum number of flip-flops or combinational logiarray. Task clusteringinvolves grouping of tasks to reduce
blocks (CLB'’s) or programmable functional units (PFU’s) aréhe search space for allocation [12]. Tasks in a cluster get
assumed to be specified. The boot memory also needs tonfigpped to the same PE. Clusters are ordered based on their
allocated for the FPGA. Generally, all flip-flops/CLB’s/PFU’griority. The outer loopof a procedure selects a cluster, and
are not usable due to routing restrictions. Based on oilne inner loop evaluates various allocations for each selected
experience, we assume only 70% (this percentage is usduster. For each cluster, atlocation arrayconsisting of the
specifiable) are actually usable. The user can also specify gassible allocations is created. Inter-cluster edges are allocated
percentage of package pins that can be used for allocationresources from the link library.

(default is 80% to allow for pins for power, ground, and due We employ a combination of preemptive and nonpreemp-
to routing restrictions). tive static scheduling. We take into account the operating

Generally, several tasks are reused across multiple fusgstem overheads, e.g., interrupt overhead, context-switch,
tions. To exploit this fact, architectural hints are derived duringgmote procedure call (RPC), etc., through a parameter called
task graph generation based on prior experience, naturepodemption overhead. Incorporating scheduling into the inner
embedded-system task graphs, and type of resource libranjotip facilitates accurate performance evaluation. As part of



DAVE et al. COSYN: HARDWARE-SOFTWARE CO-SYNTHESIS OF HETEROGENEOUS DISTRIBUTED EMBEDDED SYSTEMS 95

performance evaluation, FTE uses the longest path algorithm
to check whether specified deadlines of tasks are met. The
allocation evaluationstep compares the current allocation
against previous ones based on total dollar cost. If there is
more than one allocation with equal dollar cost, we pick
the allocation with the lowest average power consumption.
Memory requirements and peak power dissipation can also
be used to further evaluate the allocations. Next, we describe
each step of COSYN in detail.

A. The Association Array

We use two approaches to tackle the problem of large
number of task copies.

In the first approach, we shorten some of the periods by a
small user-adjustable amount (up to 3% used as a default)
to reduce the hyperperiod [14]. This is frequently useful
even if the periods are not co-prime, but the hyperperiod is
large. Doing this usually does not affect the feasibility of co-
synthesis or the architecture cost. We first identify the task
graphs which require a large number of copies. We rank such
task graphs in the order of decreasing number of copies. We
pick the highest ranked task graph and adjust its period up to
the user-defined threshold, and check its impact on the number

FORM_ASSOCIATION ARRAY (task graphs){
for each task graph T, {
/{Each task graph has a deadline equal to the
{Imaximum of all specified deadlines in it
if (period < deadline ){

T; depth=|(T; deadline +T; period)]

T; _modified period = T; depth+T; period;}

else{

T; depth=1;

1; _modified_period = T; _period;}}
hyperperiod « LCM of modified periods of all
task graphs
Jor each task graph T; {

T; length=hyperperiod =+ modified period;}
for each task t]{
create an association array of dimensions
(1; task_graph_length, 1; task_graph depth);
INITIALIZE_ASSOCIATION_ARRAY(task t));}}
INITIALIZE ASSOCIATION _ARRAY(task tj){
Ty =t;_task graph;
fori=1toT, depth{
forj=1toT, length{

EST(i, j) =Ty _EST + ((i—1)+ Ty period)+

((j—1)+ Ty _modified_period);

deadline(i, j) = EST(i, j) + T}, _deadline;

/istart and finish times are updated by the

/lscheduling & finish-time estimation procedures.

best_case_start(i,j)= worst case start(i,j)= — oo;

best_case_finish(i,j)= — oo;

worst_case_finish(ij)= — oo }}}

of copies for the other task graphs. We proceed down the rank
and stop when we bring the number of required copies beld\W"
a specified threshold.

In the second approach, we use the concept of associatio€opy 1 of the task in the first row inherits tHeST and
array to avoid the actual replication of task graphs. This arragadline from its task graph. If there are multiple tasks with
has an entry for each task of each copy of the task graph sutifierent deadlines in the original task graph, then each task in
as the PE to which it is allocated, its priority level, deadlinghe association array inherits the corresponding deadline from
best-case projected finish time (PFT), and worst-case PHRfie task graph. The best- and worst-case start and finish times
The deadline of theith instance of a task is offset iy — 1)  of the first copy are determined through scheduling and FTE.
multiplied by its period from the deadline in the original taski-or the remaining copies, all parameters are set based on those
This concept allows allocation of different task graph copies tif the first copy, e.g., thESTof the nth copy = [the ESTof
different PE’s, if desirable, to derive an efficient architectureopy 1 + (n — 1) e modified periogl
It also supports pipelining of task graphs, as explained later. As an example, consider task graphs 1 and 2, shown in

If a task graph has a deadline less than or equal to Eg. 4(a). For simplicity, assume that there is only one task
period, there will be only one instance of the task graph in each task graph and only one type of PE is available. The
execution at any instant. Such a task graph needs only thecution times of the tasks on this PE are shown next to the
horizontal dimension in the association array. If a task graglrresponding nodes. There could be up to four instances of
has a deadline greater than the period, there can be more ttsesk graph 1 executing at any instant. The modified period
one instance of this task graph in execution at some instant. Bbrtask graph 1 is 40 and the hyperperiod of task graphs 1
such tasks, the vertical dimension corresponds to concurrand 2 is 80. The association array for task graphs 1 and 2 is
execution of different instances of the task graph. shown in Fig. 4(b). The start time of concurrent instances of

In preprocessing, for each task graph with a deadline great@sk graph 1 is staggered by its period 10. The start time of the
than its period, we find the association array depth and teecond copy of each instance is offset by the modified period.
modified period. The depth is given bi(deadline of task The deadline of the second copy of task graph 1-1 is set equal
graph = period) and the modified period by the depth oto the sum of its start time and corresponding deadline, i.e.,
the array multiplied by the original period. A task graph witll0 4 35 = 75. The priority level of each task is calculated by
a deadline less than or equal to its period does not require @uptracting its deadline from its execution time, as explained
modification of the period. The hyperperiod is computed basé&der. Hence, the priority level of copy 2 of task graph 1-1 is
on the modified periods. The rows of the association arragual tol5 — 75 = —60. Fig. 4(c) illustrates the associated
represent the concurrent existence of different instances of Hrehitecture.
task graph. Each row inherits the modified period of the task Another limitation of Lawler and Martel's approach [14]
graph. The columns of the association array represent variagsighat the execution of all copies of all tasks must complete
copies of the task graph in the hyperperiod. Fig. 3 gives tlhg the hyperperiod. However, this puts significant restrictions
pseudo-code for the association array formation procedureon the scheduler. Tasks, which do not startE8T = 0,

3. The association array formation procedure.
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le

Task graph 1

©6

Task graph 2

EST=0 EST=0
Period =10 Period = 80
Deadline = 35 Deadline = 60
(a) Task graphs
PE12 PE1!

(O O

Task

[PE instance, EST, deadline, priority level, best-case
PFT, worst-case PFT}

Copy 1

Copy 2

Task graph 1-1

[PE1!, 0, 35, -20, 15, 15]

[PE1L, 40, 75, -60, 55, 55]

Task graph 1-2

[PE1!, 10, 45, -30, 30, 30]

[PE1', 50, 85, -70, 70, 70]

Task graph 1-3

[PE12, 20, 55, -40, 35, 35]

[PE12, 60, 95, -80, 75, 75]

Task graph 1-4

[PE1Z, 30, 65, -50, 50, 50]

[PE12, 70, 105, -90, 90, 90]

Task graph 1-1 Task graph 2-1
Task graph 1-2 Task graph 1-3
Task graph 1-4

(c) Architecture

[PE12, 0, 60, -54, 16, 16]

Task graph 2-1 Not Applicable

(b) Association array

Fig. 4. A two-dimensional association array.

may have the execution interval of their last copy exceed the
hyperperiod. To address this problem, the deadline of the last
copy of the task graph can be set equal to the hyperperiod.
However, this approach generally results in an increase in
system cost. To address this concern, we use the concept of
hyperperiod spill, which is the portion of the execution interval
which exceeds the hyperperiod. In order to ensure that the
resulting schedule is feasible and resources are not overused,
we must make space for the required hyperperiod spill at the
beginning of the hyperperiod (since the schedule derived for a
hyperperiod is repeated for successive hyperperiods). Hence,
we enhance the priority level of such tasks by adding the
hyperperiod to it. Doing this gives such tasks much higher
priority than other tasks in the system, enabling them to find

0000
Deadline = 60, Period = 15
PE library = [PE1, PE2, PE3, PE4]
Link library = [L1]
Exec_vector(tl) = [10, x, x, x]
Exec_vector(t2) = [x, 10, x, x]
Exec_vector(t3) = [x, x, 10, x]
Exec_vector(t4) = [x, x, x, 10]
Comm_vector(el) =2
Comm_vector(e2) = 4
Comm_vector(e3) =3
x = unallocatable

(a) A periodic task graph

O @->@)>)
(D)

a suitable slot at the beginning of the next hyperperiod. If EST:‘S @G
the required spill is still not available after the priority-level EST=130

S aCaaCan®,

EST=45

enhancement (this could be due to competing tasks which
either require a spill or must start at the beginning of the
hyperperiod), we upgrade the allocation. This approach is used
for scheduling the second copy of task graph 1-4 in Fig. 4(b).
Copy 2 of task graph 1-4 requires a hyperperiod spill of ten
time units. The priority level of this copy is-90 and that

of task graph 2-1 copy 1 is-54. The priority level of the
former is enhanced by adding the hyperperiod to its priorifig. 5. Task-graph pipelining.
level, i.e.,—90+80 = —10. Thus, this copy now has a higher

priority '?‘Ve' than that_ of ta§k_graph 2-1 copy 1. Thergforef a manner similar to the way the cluster size threshold is
the required hyperperiod spill is allocated at the beginning Br}sed during task clustering, as explained in the next section.

the_ hypgrperi%d. :(-k?nce, ta;k gra(;)h 2-1 lstartsbexe.cution f'"t ti'ﬂ?e allocation of various pipeline stages is done during the
unit 10 instead of time unit 0 and completes by time unit 1&,c4ti0n step by creating an allocation array. The same stages

When possible, concurrent instant_:es of task _graphs_ arg f"‘g?'diﬁerent concurrent instances of task graphs are allocated
cated to the same set of PE’s and links to achieve pipelining. ihe same PE.

For example, consider the periodic task graph, resource library,
and execution/communication vectors, shown in Fig. 5(a). .
Since its deadline is 60 and period is 15, four concurreBt Task Clustering

instances of the task graph may be running, as shown inQur clustering technique addresses the fact that different
Fig. 5(b). These concurrent periodic task graphs could baths may become the longest path through the task graph at
allocated, as shown in Fig. 5(c), to achieve a pipelined afifferent points in the clustering process since the length of
chitecture L1', L1? andL1* are different instances of linkl. the longest path changes after partial clustering. We extend
Pipelining is done for the task graph which requires concurretiie method given in [12] for this purpose. Our procedure also
execution. This is either determined by architectural hints supports task graphs in which different tasks have different
based on its period and deadline. The pipeline stage size is cdeadlines. We first assign deadline-based priority levels to
trolled by a user-specified parameter called pipeline_threshédgks and edges using the following procedure. A sink task
(default is equal to the period of the task graph). It is usedways has a specified deadline, whereas a nonsink task may

(b) Concurrent task graph instances
tl 2 t3 t4

(c) Architecture and allocation
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FORM __CLUSTERS(task graphs){
sorted_list <— sort tasks by decreasing priority levels;
threshold = hyperperiod;
Jor each task t; {
t; tag = NOT CLUSTERED;}
cluster list <NULL;
Jor each unclustered task t; from sorted list {
Jfan-in-set (t;) = NULL;
Jor each fan-in task t; {
if (t; is not already clustered with another
Jfanout task and its cluster is compatible with t;){
if (size (c/usrer(rj) U t;) < hyperperiod){
Jan-in-set (t; ) = fan-in-set(t;) + (;;}}}
if (fan-in-set(t;) = NULL){
allocate a new cluster Cj;
cluster list «cluster list U (C});
CLUSTER GROWTH(C, ;).}
elsef
ty— a task from fan-in-sef(t;) with the
highest priority level along task t;;
Cj = cluster(ty);
(i, 1) =0;
CLUSTER GROWTH(C, ;).}
sorted_list <= sort tasks by decreasing priority levels;}

CLUSTER_GROWTH(Cluster Cy, task t;){

t, = last task of cluster Cy;
Cy = CL U (1;);// add task t; to cluster Cy,
lupdate preference and exclusion vectors of cluster Cy,
preference vector(Cy) = preference_vector(Cy) AND
preference_vector (1;);
exclusion_vector(Cy) = exclusion_vector(Cy) OR
exclusion_vector(1;);
t; tag = CLUSTERED;
if (Cy has more than one task) {
assign priority levels (t; _task_graph);}
if (size of cluster Cy is < hyperperiod){
find the fan-out-set of t; among its unclustered fanout
tasks which are compatible with cluster Cy;
if (fan-out-set is not empty) {
eligible_fan_out_task t,, < a task from the
fan-out-set along the edge from 1; to which the
priority level of t; is the highest and the size of
(Cy U t,,) is < hyperperiod;}
if (1, exists){
B(tb ty) = 0;
Cy = QU {t,,};1/ add task t,, to cluster Cy,
/lupdate preference and exclusion vectors
llof cluster Cy,
preference_vector(Cy) = preference_vector(Cy)
AND preference_vector (1,,);
exclusion_vector(Cy) = exclusion_vector(Cy)

OR exclusion_vector(t,,);
1 tag = CLUSTERED;
assign priority levels (t;_task graph);}}
return cluster list;}
or may not. We definev(t;) to be equal to the deadline ofrig 7. The cluster growth procedure.
taskt; if the deadline is specified, angb otherwise.
1) Priority level of sink task; = «™**(t,) — deadline(z,;).
2) Priority level of edge:;, = priority level of destination
node (ex) + 8™ (ex).

return cluster list;}

Fig. 6. The critical path-based clustering procedure.

Initially, we sort all tasks in the order of decreasing priority
levels. We pick the unclustered tagkwith the highest priority
3) Priority level of nonsink task; = max (priority level vael ha_mrclj _mark |ttcll,|fstfere(_1. 'tl'hekn v':/he tfmd trletr:an?n”seF of
of its fan-out edger;, —w(t;)) +am (). é(;nvsvtr;m;.s a set of fan-in tasks that meet the following
As an example, the numbers adjacent to the nodes In - . .
Fig. 1(a) indicate their associated priority levels. The priority 1) the fan-|_n taSk,'s not cluste_red with a_mothe_r fan-out task;
level of a task is an indication of the longest path from the taskz) the fgn-m task’s clustet’, is compatible witht;;
to a task with a specified deadline in terms of computation and3) the size of cluster’;, does not exceed'y,.
communication costs and the deadline. To reduce the schedfithe fan-in set oft; is not empty, we identify an eligible
length, we need to decrease the length of the longest pathabyster which is grown (i.e., expanded) using the cluster growth
clustering of tasks along it to make the communication cog&ocedure given in Fig. 7. If the fan-in set gfis empty, we
along the path zero (this is based on the traditional assumpt®llpcate a new cluste?;, and use the cluster growth procedure
made in distributed computing that intra-PE communicatid® expand it.
takes zero time). Then the process can be repeated for théhe cluster growth procedure adds taskio the feasible
longest path formed by the yet unclustered tasks, and so o@luster identified from the fan-in set or to a new cluster, and
To ensure load balancing among various PE’s, the clusgiows the cluster further, if possible, by adding one of the
size is limited by a parameter called cluster-size threstigld compatible fan-out tasks a@f along which the priority level
Ciu is set equal to the hyperperidd Let there bek PE’s of ¢; is the highest. It recomputes the priority levels of the
in the PE library to which cluste€’;. is allocatable. Thus, tasks in the task graph of after clustering; either with any
preference_vect¢€) will have 1's corresponding to thede existing cluster or after clustering it with one of its fan-out
PE'’s. For any cluste€, containingm tasks{¢;,ts,---,%,}, tasks. This lets us identify and compress the critical path as
its size, denoted &%, is estimated as follows. Letdenote the it changes.
period of the tasks in clust&r, and letl” be the hyperperiod. Consider the task graph in Fig. 8. For simplicity, assume
Then that the resource library contains only one PE and one link.
m The execution and communication times are given in nonbold
O = maxz aij - (I +p). numbers next to nodes and edges, respectively. The deadline
= of this task graph is 34. The bold numbers indicate the initial
To take into consideration the worst-case allocation, wariority levels of tasks and edges. Application of the clustering
obtain 6, as the maximum over all PE's of the summatioprocedure from [12] results in two cluster&l, ¢3,¢4) and
of the execution times of all copies of all tasks in clustet2). The resulting architecture consists of two identical PE’s
Cj. Fig. 6 gives the critical path-based clustering procedureonnected with a link. The PFT with this architecture is
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19 FORM _ALLOC ARRAY(cluster C,, partial architecture){
form allocation array considering the following;

1) addition of architectural templates based

on architectural hints

2) preference vector

3) existing partial architecture

4) upgrade of existing links

5) upgrade of existing PEs

6) addition of new PEs of each type

7) addition of new links of each type to each PE

ed
-16

-26

EST =0, Period = 40 for each allocation {
Deadline = 34 Jor each PE and link{
Fig. 8. A task graph to illustrate clustering. if (gate count, power, pin count, memory limits, or

communication port count etc. are exceeded){
remove allocation from the allocation array;
35, which exceeds the deadline. However, our clustering break;}}}
procedure starts with task, which has the highest priority Order a/locanf.ons in the order of increasing dollar cost;
level, and groups it with tasks; since t; has a higher return allocarion array; J
priority level along the edge to task. At this point, the Fig. 9. The allocation array formation procedure.
communication time of edge2 is made zero and the priority
levels recomputed. Since tagk now has a higher priority
level than tasks, clustering starts afresh frots. The resultant links at any allocation step in order to keep the size of the
clusters argt1,¢3) and (2, t4). The PFT is 34 with the two allocation array manageable. During allocation array creation,
PE/one-link architecture, which meets the deadline. A tafff €ach allocation we check for signal compatibility (5-V
around which either a new cluster is formed or expandéMOS-3.3-V. CMOS, CMOS-TTL, etc.), and add voltage
is termed as theseedof the cluster. In [12], the seed istranslation bufferd. We exclude those allocations for which
always the task that has just been clustered. In our meth8#€ Pin count, gate count, communication port count, memory
we look for the best seed at each clustering step, giviilits, and peak power dissipation are exceeded. The alloca-
it an advantage. Clustering of tasks can change the priorﬂ?”s in the array are ordered based on dollar cost. If power is
levels of the remaining tasks in the task graph. Therefof€ing optimized, the ordering is done based on average power
it may impact the critical path. Although not illustrated bydissipation. Once the allocation array is formed, we mark
the example in Fig. 8, recomputing priority levels gives owtll allocations as unvisited. We pick the unvisited allocation
method an additional advantage in accurately identifyingV4th the least dollar cost, mark it visited, and go through
critical path, while taking into account the impact of clusterin§cheduling, performance estimation, and allocation evaluation
on priority levels of unclustered tasks. steps described next.
The application of the clustering procedure to the task

graph of Fig. 1(a) results in three cluste@], C2, andC3, D. Scheduling
as shown in Fig. 1(d). Once the clusters are formed, somewe use a priority-level-based static scheduler for scheduling
tasks are replicated in two or more clusters to address intg{sks and edges on all PE’s and links in the architecture. This
cluster communication bottlenecks [15]. This is useful wheg pased on the list scheduling philosophy [16]. We generally
the increase in computation time is less than the decrease indBRedule only the first copy of the task. The start and finish
communication time. We replicate only those tasks which afignes of the remaining copies are updated in the association
compatible with the cluster. During the allocation step, if thgrray, as discussed earlier. The remaining copies need to be
two clusters are allocated to the same PE, then the replicaigleduled only when a required execution slot for a subsequent
tasks are no longer needed to address the communicai@py is already occupied by a copy of a previously scheduled
bottleneck(s). In that case, they are removed from the clustaigyher priority task. This occurs when the higher priority task

has a different period or different execution time or different
C. Cluster Allocation start time. To illustrate this scenario, consider the task graphs

Once the clusters are formed, we need to allocate thephown in Fig. 10(a). For simplicity, assume that there is only
We define the priority level of a cluster to be the maximur@ne task in each task graph. The numbers next to tasks in
of the priority levels of the constituent tasks and incomingig. 10(a) denote their execution time on the sole PE-type
edges. Clusters are ordered based on decreasing priority lev&Yailable. The hyperperiod of these two task graphs is 60.
After the allocation of each cluster, we recalculate the priorityherefore, three copies of task graph 1 and two copies of task
level of each task and cluster. We pick the cluster with tr@faph 2 are required in the hyperperiod, denoted'ad? 1%,
highest priority level and create an allocation array. We ord@pd 2, 22, respectively. The priority levels of tasks and
the allocations in this array in increasing cost order. We théh are —6 and—20, respectively. Hence, task Is scheduled
use the inner loop of co-synthesis to evaluate the allocatiof§st. The schedule of tasks’ land ¥ are derived using the

An allocation array is created using the procedure givé¥$sociation array by simply adding its period to the schedule
in Fig. 9. Architectural hints are used to pre-store allocationiy wcciear, “Low-cost, low-power level shifting in mixed-voltage sys-
templates. We allow the addition of only two new PE’s an@ms,” Applicat. Notes, SCBA002, Texas Instruments, Dallas, TX, 1996.
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0 . it, it may be necessary to obtain an efficient architecture. In
O O order to decide whether to preempt or not, we use the following
Task graph 1 Task graph 2 criteria. Let¢; and¢; be the priority levels of taskg andt;,
Period =20 Period = 30 . : . :
EST 20 EST o8 respectively, and letv;, and «;,. be their execution times on
Deadline =16 Deadline = 24 PE r. Let 5. be the preemption overhead on PEo which
(a) Task graphs and associated parameters taskst; andtj are allocated. L%b(ti) be the best-case finish

time (this takesw;,. into account) ang.(¢;) be the deadline
of task¢;. We allow preemption of task; by ¢, under the

i following two scenarios: 1)p;, > ¢; or 2) ¢; is a sink task,
(b) After task 1 and its copies are scheduled and = (tz) + 7 + < N(ti)-

o 101 Preemption of a higher priority task by a lower priority task
per (1 DTEEH is allowed only in the case when the higher priority task is a
(c) After task 1, its copics and task 2! are scheduled sink task which will not miss its deadline, in order to minimize
0 10 14 20 50 54 60 the scheduling complexity. This is important since scheduling
pE1 [11_ [T 12 F ] o : ; ; ;
is in the inner loop of co-synthesis. Architectural hints are
(d) Final schedule checked for each task before allowing preemption since an

embedded-system specification may require that some critical

Fig. 10. Scheduling of different copies. ) ) i ot
tasks not be preempted irrespective of their priority levels.

SCHEDULE(current_architecture, task graphs,

association array){ E. System Performance Estimation

assign deadline-based priority levels to tasks o )

a,,didges; We store the best- and worst-case start and finish times

initializ: thekassozga;j;n aray of of each task and edge. Each node (communication edge) in

SK t; t start a = .. . . .

% oriZZfI,,;; ;het’j:; le,py Zjefiin;:}’i;ich requires the task graph has the minimum and maximum entries in the
a hyperperiod spill; ‘ corresponding execution (communication) vector associated

taszjﬁrtlfi”zr;etr’}?;g:ﬁ%: gfsezrrf)?ﬂ;}msmg with it. When a task (edge) gets allocated, its minimum and

priority levels; maximum execution (communication) times become equal and

Jor each 1 of fas:_gsi{d} correspond to the execution (communication) time on the PE
ty_tag = unscneduled;, . . I . .

for each unscheduled task 1, from rask_lis{ (link) to W_h|ch it is allocated, as shown in Fig. 1(d) (here,
schedule all incoming edges of 1); //schedt;lelsd clusterC1 is assumed to be mapped Ri2). The FTE step,
i’fZ:J:lé‘}ffjt kA Z’;ﬁ ;;eag’tzgfﬁgﬁiizze e after each scheduling step, updates the best- and worst-case
hyperperiod spill; N _ finish times of all tasks and edges. This is done as follows.
””j‘”.;““""‘“”"” “g’jylfz’: e”ﬁii’,fi’,'l’;”:;;fei?”’” Let #® and 7% represent best- and worst-case finish times,
ana, if necessary, scneau 3y . .. .
if (s not scherjulable){ respectively. The'best— and' worst-case f!I’IISh tlme.s for a task

return failure; ' and edge are estimated using the following equations:
break;lireject the current architecture;}
1y _tag = scheduled;} brey — b ming/y
return success;} ™ (t”) max{7r (6) +a (tz)}
Fig. 11. The procedure for scheduling task graphs. and

7(t;) = max{r*(e) + a'**(t;)}
of task T. The resulting schedule is shown in Fig. 10(b).
Next, task 2 is scheduled in the first available slot {10,14}Wheree € {E}, the set of input edges af
The resulting schedule is shown in Fig. 10(c). Based on the b b min
schedule of the first copy, the desired schedule for tdsis 2 i) =7 (t) + Fe))
{10430, 14+ 30} = {40, 44}. However, this execution slot is gpq
not available. Hence, task 2s scheduled in the first available
slot after that, which is {50,54}. The resulting schedule is 7 (ej) =7 (k) + B (ey)

shown in Fig. 10(d). heret, is th de of ed
We use the procedure outlined in Fig. 11 to schedufé€r€®x 1S the Source node of edgs.

tasks and edges. We first identify the copies of tasks whi _Let us next apply the above FTE method to our task graph of

. . : : -ig. 1(a). Suppose clust@lis allocated td’E2, as mentioned
require a hyperperiod spill, and add the hyperperiod to th I}fore. Then we would obtain the FTE graph of Fig. 1(d),

prlorlty levels. We orQer tgsks and edges based on the %ich indicates that the best- and worst-case finish times of
creasing order of their priority levels. If two tasks (edges .?k taskt11 are 150 and 200, respectively

have equal priority levels then we schedule the task (ed 2
with the shorter execution (communication) time first. While
scheduling communication edges, the scheduler considers i
mode of communication (sequential or concurrent) supportedEach allocation is evaluated based on the total dollar cost.
by the link and processor. Though preemptive scheduling ker hardware cost estimation, we use the incremental cost-
sometimes not desirable due to the overhead associated w#timation approach [17]. We pick the allocation which at

éAIIocation Evaluation
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least meets the deadlines in the best case. If no such allocation O PE2(C1) Q PEI(C1)
exists, we pick an allocation for which the summation of the Cos=10 Comee 120
best-case finish times of all task graphs is maximum. The PFT = {150, 200} PFT = {110, 160}
best-case finish time of a task graph is the maximum of the Upgrade Bring in new cluster
best-case finish times of the constituent tasks with specified @ ®
deadlines. This generally leads to a less expensive architecture PELCL, C2) O
since a larger finish time generally corresponds to a less O ’ PE1(CI, C2, C3)
expensive architecture. If there is more than one allocation mefg"gtfzéz}o Cost =120
which meet this criterion, we choose the allocation for which Bring in new cluster PET = {110, 110}
the summation of the worst-case finish times of all task graphs © Vpgrade

is maximum. The reason behind using the “maximum” instead

L2 L1
of “minimum” in the above cases is that, at intermediate steps, ( >_——( ) O—O

we would like to be as frugal as possible with respect to the PEI(C1,C2)  PE2(C3) PEI(CI,C2)  PE2(C3)
total dollar cost of the architecture. If deadlines are not met, Cost=210 Cost =225
we can always upgrade the architecture at a later step. PET = {120, 1203 PFT ={100,100}
Upgrade Success! Deadline met
(e ®
G. Support of Multiple Supply Voltages Fig. 12. Stepping through co-synthesis.

Our co-synthesis algorithm supports a resource library in _ _ o
which different PE’s require different supply voltages. Thignd all clusters are allocated, the final architecture is given in
allows mixing of different technologies and derivation ofig. 12(f).
power-efficient architectures by taking advantage of state-
of-the-art low-power technology. Support of multiple supply IV. CO-SYNTHESIS OF LOW-POWER EMBEDDED SYSTEMS

voltages requires checking of signal voltage level compatibility |n this section, we describe the co-synthesis system for low-
for each communication link/PE interface, inclusion of voltaggower, called COSYN-LP. The basic co-synthesis procedure
level translation buffers in the architecture, and estimation gfitlined in Fig. 2 is also used in COSYN- LP. The parsing and
power requirements for multiple voltage levels. The powejssociation array formation steps remain the same as before.

dissipation in translation buffers is computed consideringe describe next how the other steps are modified.
its average quiescent power dissipation, frequency of the

communicating link, and the activity factor of the sighal. A Task Clustering
Once the architecture is defined, we determine the power-

distribution architecture of the system and add the requireFIWte use d:adline-based ptrfiori:y IE\/_eIs _tokc20(_)ts ©a task fgr
power-supply converters [18]. This defines the power-supp pstenng. However, once the fask is picked, 1t 1S groupe
éth a task along which it has the highest energy level to

capacity and the interconnection of various power convert ! o .
orm clusters. This makes the communication time as well

to meet the power requirements of the embedded system. T .
as communication energy for such inter-task edges zero. The
energy level concept also takes into account the quiescent

H. Application of the Co-Synthesis Algorithm energy dissipation in PE’s and links. This is why we target

We next apply our co-synthesis algorithm to the task grap%‘ergy levels even .‘hOF’gh our ultimate go_al IS to minimize
. P aa/erage power dissipation subject to the given real-time and

of Fig. 1(a). The three clusters shown in Fig. 1(d) are ordere ak power constraints

based on the decreasing value of their priority levels. Fig. SaK p y

. : . . Energy levels are assigned as follows.

illustrates the allocation of various clusters. Since cluster )

C1 has the highest priority level, it is allocated first to the 1) For each task; (ed%iij)’ detglir}?lne the average en-

cheaper process®E2[Fig. 12(a)]. The PFT of the task graph ergy dissipation, as™*(t;) (3"**(e;)) multiplied by

is estimated to be {150, 200} [Fig. 1(d)]. Since the best-  the average power dissipation on the corresponding

case estimated finish time does not meet the deadiine, the PE (k). a*(¢;) and 5**(c;) are chosen because

partial architecture is upgraded. Therefo®d, is allocated to meeting real-time constraints is most important. Mark

processolPE1 [Fig. 12(b)]. Since the deadline is still not met all tasks as unvisited.

and all possible allocations are explored, cluiéris marked ~ 2) FOr each unvisited task in the task graph, do the

as allocated and clust€?2 is considered for allocation. First, following.

an attempt is made to allocate clust@®? to the current PE a) If ¢; is a sink task, energy leve(¢;) = [average
[Fig. 12(c)]. Finish-time estimation indicates that the deadline energy of task;]. Mark ¢; visited.

can be met in the best case. Hence, clu§®iis considered b) If ¢; is not a sink task, for each edge= (¢;,%;)
for allocation next. Again, an attempt is first made to allocate in the set of fan-out edges of tagk energy level
cluster C3 to PE1 [Fig. 12(d)]. Since the deadline is not (t;) = max (energy level(t;) + average energy
met in the best case, the architecture needs to be upgraded (ti,ty) + average energyt;)). Mark ¢; as visited.

[Fig. 12(e)]. Since the deadline is still not met, the architecture The cluster formation procedure is the same as before,
is upgraded again [Fig. 12(f)]. Now that the deadline is meixcept that we use energy levels instead of priority levels.
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C2

40

15 (2)(27.5) 40

e2
-5(13)(20) @5(15)

e3
25(t4)(12.5)

ed
4515 (3

EST =0, Deadline = Period =55
(a) Task graph (b) COSYN clustering (d) COSYN-LP clustering

LI LI
[t1-t5] 5 @ 6,7 (2] =i [t1, 16, t7]

Finish time of task t5 = 50

Finish time of task {7 = 40 Finish time of task t5 =51

Total energy = 60 Finish time of task t7 = 30
Cost [PE1, L1] =[100, 20] Total energy = 55.25
(c) COSYN architecture (e) COSYN-LP architecture

Average power dissipation (t1, t2, t3, t4, t5, t6, t7) = [0.5,0.5,05,0.5,0.5, 1.5, 1.5]
Maximum execution time (t1, t2, t3, t4, t5, 6, t7) = [10, 10, 10, 10, 10, 10, 10]
Average power dissipation (el, €2, €3, e4, €3, e6) = [0.25, 0.25, 0.25, 0.25, 0.50, 0.50]
Maximum communication time (e1, €2, €3, e4, 5, e6) = [1, 10, 10, 10, 10, 20]

(f) Average power, execution and communication vectors

Fig. 13. Task clustering for low power.

The energy levels are recomputed after the clustering of edtihk). Let ¢; € {T'} (¢; € {E}) be the set of tasks (edges)
node. Once clustering is done, we replicate some tasksaissigned to theth processor” (Ith link L). The peak power
more than one cluster to eliminate inter-cluster communicatiéor P and L aremax{peak powert; € {T})} andmax{peak
bottlenecks as before [15]. Consider the task graph showower (¢; € {E})}, respectively. These should not exceed
in Fig. 13(a). The numbers in brackets (bold) indicate initidhe specified peak power constraints. [Rét and 6 represent
energy (priority) levels. They have been derived from thihe average energy, and quiescent average power dissipation,
vectors given in Fig. 13(f). Application of COSYN resultsrespectively. LeW represent the idle time in the hyperperiod.

in two clustersC1 and C2 [Fig. 13(b)], and the architectureLet n; (n;) be the number of times that tagk (edgee;) is
shown in Fig. 13(c). For simplicity, only one PE and link arexecuted in the hyperperiod. The average energy’fand L
assumed to be present, whose costs are shown in Fig. 13&)estimated using the following equations:

COSYN-LP results in a different clustering [Fig. 13(d)], and

the architecture shown in Fig. 13(e). It reduces energy con-

sumption from 60 to 55.25 units with a minor increase in the ~ R°(P) = | > &ip- ctip -1 | + [65(P) - U(P)]
finish time, while still meeting the deadline. For simplicity, we t:€T

have assumed the quiescent power dissipation in the PE’s/links

to be zero. However, in general, we take this into account, as ~ R%(L) = Z Ei- By | +[65(L) - (L))
explained later. e;CE

B. Cluster Allocation and Performance Evaluation The average power dissipation &f and L is estimated by
In the outer loop of co-synthesis, the allocation array wividing their energy dissipation by the hyperperiod.
created, as before, for each cluster, and each allocation i2) FPGA/ASIC: Tasks assigned to FPGA’s and ASIC’s
checked to see if the peak power dissipation and memamgn run simultaneously. Therefore, the peak power of an
capacity (for general-purpose processors) of the associabRIGA/ASIC is the summation of the peak power required
PE/link is exceeded. To each link of the allocation, we adaly all tasks assigned to them and the quiescent power of the
the required voltage translation buffer if needed. Entries imused portion of the FPGA/ASIC. The average energy/power
the allocation array are ordered based on increasing averag8mation procedure is similar to the one given above.
power dissipation. If there is more than one allocation with 3) System Power DissipatioriThe average power dissipa-
equal average power dissipation, then the allocation with thien of the partial architecture is estimated by dividing the total
least dollar cost is chosen. Further ties are broken basedestimated energy in its PE’s/links by the hyperperiod.
peak power dissipation. In the inner loop of co-synthesis, in During the allocation evaluation step, we pick the allocation
addition to FTE, architecture energy/power estimation is alsdhich at least meets the deadline in the best case. If no
performed as follows. such allocation exists, we pick an allocation for which the
1) Processor/Link: The average and peak power are estsummation of the best-case finish times of the nodes with
mated based on the tasks (edges) allocated to the processgecified deadlines in all task graphs is maximum.
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TABLE |
EXPERIMENTAL RESULTS FOR TASK GRAPHS FROM THE LITERATURE
Number of PEs/links Cost ($) CPU time (sec)
Prakash | Yen/ COSYN | Prakash | Yen/ | COSYN | Prakash & Yen/Hou & | COSYN
Example/no. of tasks | & Parker| Hou & & Parker | Hou & Parker Wolf on
Wolf Wolf on on Sparc 20
Solbourne Sparc 20
5/6/900
Prakash & Parker (0)/4 170 E 1/0 5 - 5 37.0 E 0.20
Prakash & Parker (1)/9 1/0 1/0 170 5 5 5 3691.2 59.2 0.40
Prakash & Parker (2)/9 271 31 21 10 10 10 7.41rs 56.8 0.54
Prakash & Parker (3)/9 - 3/1 2/1 - 12 10 - 193.3 0.58
Prakash & Parker (4)/13 | 1/ : /1 5 E 5 106.7hrs : 0.84
Yen & Wolf Ex/6 : 312 32 B 1765 | 1765 : 10.6 0.74
Hou & Wolf Ex1/20 - 21 21 E 170 170 - 14.9 5.10
Hou & Wolf Ex2/20 - 271 21 - 170 170 - 50 2.64
DSP/119 : - 271 : B 100 : - 127.30
V. EXPERIMENTAL RESULTS TABLE I
Our co-synthesis algorithms, COSYN and COSYN-LP, are COSYNWITH ASSOCIATION ARRAY AND CLUSTERING
implemented in @+. Table | provides results on examples Examples | NO:Of |Cost$)| CPU ] Average power
from the literature. Prakash & Parker(0-4) are from [7]. no. of tasks Efi (t;?:) d‘(s&zft:;’“
Prakash & Parker(0) is the same as ta§k 1lin .[7]. _Prakash BETSTITS i 03 55 v
& Parkt_ar(l-3) are the same as tr_:lsk 2in [_7] Wlth different BETSI/4S 7 155 ) D)
constraints. Prakash & Parker(4) is a combination of task 1 BETSYISE T 31 T i755 | 11640 TN
and task 2 from [7]. Yen & Wolf Ex is from [9]. Hou & Wolf BCS318 87 119800 | 91030 198.40
Ex(1,2) are from [10]. DSP is from [15] with deadline and ATMIE/512 | 24/7 | 11800 | 1419.40 214.60
period assumed to be 6.5 s. The PE and link libraries used in BATIF1/728 | 28/11 | 14214 | 3942770 238.24
these results are the same as those used in the corresponding BATIF2/845 | 35/12 | 16088 | 10418.64 307.10
references. As shown in Table I, COSYN consistently outper- OASIF/1072| 44/16 | 27145 [ 1686470  381.70

forms both MILP [7] and iterative improvement techniques
[9], [10]. For example, for Prakash & Parker(4), the MILP

technique required approximately 107 h of CPU time on COSYN WTH-(I—)'?\J?_PI\ESS”(;CIATION ARRAY
Solbourne5/e/900, and Yen and Wolf's algorithm was unable
to find a solution, whereas COSYN was able to find the same Example/ b{,‘gs‘;f Cost($) E;S Avdei;zigea‘[’i‘:;“
optimal solution as MILP in less than 1 s on Sparcstation 20 no. of tasks | .\ (sec) (w‘;ts)
with 256-Mbytes random access memory (RAM). BETSI/TS 7 305 &l 218
We also ran COSYN and COSYN-LP on large Bell Lab- BETS245 3 255 346 710
oratories telecom transport systems task graphs representing  BETS3/156 | 13/11 | 1725 | 1515.32 25.85
real-life field applications. They contain tasks for synchronous BCS/318 16/8 | 19550 | 8829.91 189.80
optical network interface processing, asynchronous transfer- ATMIF/512 | 22/7 | 11610 [10503.56 195.40
mode cell processing, digital signal processing, provisioning, BATIF1/728 | 26/11 | 14080 |33221.19 232.60
transmission interfaces, performance monitoring, protection BATIF2/845 | 32/11 | 15800 | 72557.46 |  299.85
switching, etc. Thy have wide variations in their periods rang- OASIF/1072| 43/15 | 26895 | 78248.30|  364.30

ing from 25,5 to 1 min. On an average, over 70% of tasks in

the task graphs are of different types. The general-purpose pro- ) , ,
cessors had the real-ime operating system, pSQ@nning were synthesized for various standard-cell technologies and

on them. The execution times included the operating systéfh @A families. The link library was assumed to contain a
overhead. For results on these graphs, the PE library w280X0 bus, a 10-Mb/s LAN, and a 31-Mb/s serial link.
assumed to contain Motorola microprocessors 68360, 68040Results in Tables 1I-VI show that COSYN was also able
68060 (each processor with and without a 256-Kbyte secori@- handle the large telecom transport system task graphs
level cache), 11 ASIC's, one XILINX 3195A FPGA, angefficiently. Note that even architectures with the same number
one ORCA 2T15 FPGA. For each general-purpose process¥frPE’s and links can have different cost because of different
four DRAM banks providing up to 64-Mbyte capacity werd’Es/links that may have been used. Also, two architectures
evaluated. DRAM devices with 60-ns access time were us&dth equal cost and the same number and type of PE’'s
The ASIC’s were based on the existing designs of varioasd link can still have different power dissipation since they
telecommunication systems. For new functions, macro blockey employ different schedules with different number of
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TABLE IV
COSYN WiTHouT CLUSTERING
Example/ No. of | Cost($) (?PU Ave.ra;.;e power
0. of tasks I.’Es/ time dissipation
links (sec) (Watts)

BETS1/15 2/1 305 2.81 425
BETS2/45 4/3 455 3.57 7.45
BETS3/156 | 13/11 1725 374.60 24.95
BCS/318 17/8 19650 | 1425.41 191.32
ATMIF/512 23/7 11700 | 3104.38 208.95
BATIF1/728 | 27/11 | 14100 | 12380.10 234.46
BATIF2/845 | 33/12 | 16005 | 18961.53 301.45
OASIF/1072 | 42/14 | 25995 | 38204.75 370.52

TABLE V

COSYN WiTHOUT ASSOCIATION ARRAY AND CLUSTERING
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TABLE VII
COSYN-LP
No.of [ Cost CPU Average | Measured
Example/ | PEs/ | ($) time power Average
no. of tasks | links (sec) | dissipation power
(Watts) dissipation
(Watts)
BETS1/15 3/1 368 1.20 2.66 2.45
BETS2/45 5/4 | 554 2.20 5.73 5.29
BETS3/156 | 12/10 | 1993 | 142.56 23.57 22.18
BCS/318 16/8 {22400 ( 1018.72 | 161.34 154.10
ATMIF/S512 | 25/9 | 12760} 1609.63 | 178.15 166.90
BATIF1/728 | 28/12 {16224 | 5046.70 | 211.15 199.80
BATIF2/845 | 35/12 | 17600 [12166.84| 240.80 225.60
OASIF/1072 | 47/18 | 29425 |19910.21] 337.42 312.41

time at an average increase of 1.4% in embedded-system

nixz?gis 1\}1%.? C(git S;S A‘zz%;;zxer cost. This enables the application of COSYN to very large
links (sec) (Watts) task graphs. However, since CPU time is not a big concern
BETSI/LS o 303 749 711 for smaller task graphs with a well-behaved hyperperiod, we
BETS2/45 a3 455 687 7.10 have provided flags in our co-synthesis system to allow the
BETS3/156 | 13/11 | 1725 | 1749.95 2435 user to bypass association array formation or task clustering
BCS/318 16/8 | 19550 | 10088.34 187.60 or both. Tables Il and VI show the importance of using a
ATMIF/512 | 22/7 | 11590 | 14364.33 193.82 resource library, which includes PE’s operating at different
BATIF1/728 | 26/11 | 14005 | 44434.28 230.20 supply voltages. While using a resource library with only 5-V
BATIF2/845 | 32/11 | 15750 | 90537.98 294.62 PE’s, the architecture was not feasible for BETS3 and BCS
OASIF/1072 | 42/14 | 25890 | 12041296 |  363.11 since some of the associated tasks required PE’s with different
supply voltages. Support of multiple supply voltages results in
TABLE VI an average reduction of 33.4% in power dissipation and 12%

COSYN UsING A RESOURCELIBRARY WITH 5-V PE’s QLY in embedded-system cost.

Table VII gives the results for COSYN-LP. COSYN-LP was

nﬁxzr;tzlis Pg;;iiﬁis Cost($) iﬁ}i /?:fvigre able to reduce power dissipation by an average of 19.6%

(sec) | dissipation over COSYN (Table Il) at an average increase of 13.9%
(Watts) in embedded-system cost. For these results, both COSYN

BETS1/15 42 410 0.45 8.93 and COSYN-LP were supplied with a resource library with

BETS2/45 94 612 1.67 12.46 PE’s operating at different supply voltages. Also, as shown

BETS3/156 Architecture is not feasible in the last column of Table VII, the actual system power

BCS/318 Architecture is not feasible measurements made on the COSYN-LP architectures indicate

ATMIF/512 | 25/5 | 12400 | 1400.10 | 298.72 that the error of the COSYN-LP power estimator is within 8%.

BATIF1/728 | 30/12 | 15308 | 3890.51 356.60

BATIF2/845 | 37/14 | 17145 | 1033560 | 411.62 VI. CONCLUSION

OASIF/1072 | 47/17 | 27850 | 15989.38 | 509.56

We presented an efficient distributed system co-synthesis
algorithm. Even though it is a heuristic, experimental results

preemptions. For the results in Table II, COSYN was allowed'ow that it produces optimal results for the examples from the
to use both the association array and task clustering. literature. It provides several orders of magnitude advantage in
Table IIl, it was allowed the use of task clustering, but nd¢PU time over existing algorithms. This enables its application
association array. In Table IV, it was allowed the use d¢ large examples for which experimental results are very
association array, but not task clustering. Finally, in Table \ncouraging. Large real-life examples have not been tackled
it was not allowed the use of either association array greviously in the literature. We have also presented one of the
task clustering. From Tables Il and Ill, we can see that tfist co-synthesis algorithms for power optimization. COSYN
association array Concept reduces CPU time by an averagéScﬁUrrently being used in Lucent Bell Laboratories to tackle
81% (average is based on individual reductions) at an averdg@ next generation telecom transport system task graphs.
increase of 0.8% in embedded-system cost. From Tables I
and IV, we can see that task clustering reduces CPU time
by an average of 59% at an average increase of 0.9% (0] M. R. Garey and D. S. JohnsoBpmputers and Intractability: A Guide
embedded-system cost. From Tables Il and V, we can s to the Theory of NP-CompletenessSan Fnancisco, CA: Freeman, 1979.
that the combination of the association array concept and tai% o Kalavade and P. 2, Subrahimanyam, ‘Hardwareisoftware partitioning

ystems,” irProc. Int. Conf. Computer-Aided Design
clustering results in an average reduction of 88% in CPU
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